White Paper

Systems Engineering for Smart Products

Requirements and
Specifications

l System
Validation

System Functional &

Today’s products are increasingly more intelligent and interconnected — thus the widely
adopted “smart” prefix — smart cars, smart buildings, smart appliances. Software-controlled
mechatronic systems are used routinely to deliver advanced features, improve safety and
reduce power consumption. Consequently, product development processes intended for
hardware-dominated systems are no longer adequate. Special attention must be given to the
electronics and embedded software that control these systems — in addition to all the inter-
acting hardware components. Managing product complexity, reducing software development
costs and optimizing system performance at all design phases are mounting challenges that
many companies are addressing. This paper examines three best practices being implemented
to overcome these challenges: model-based systems engineering, virtual system prototyping
and model-based software development.

Product Complexity Drives New Development Process

In nearly every industry, consumers and businesses benefit from the
evolution of smart products. These are highly engineered, multi-functional
products that interact with people and their environments in new ways to
ensure safety, improve efficiency and/or reduce energy consumption. Take
the automotive industry as an example, in which safety systems automati-
cally take corrective action to avoid collisions: Google is sponsoring R&D of
a completely autonomous vehicle. In the aerospace community, intelligent
avionics are being developed that fly a damaged plane and land it safely.
Meanwhile, investments in renewable energy result in smart turbines that
continuously change shape and pitch depending on weather, current energy
demands, and the performance of nearby turbines.

Under the hood of every smart product is a complex composition of me-

Sub-System Integ. &

sign

Py Component Integration

Verification

chanical assemblies, micro-electronics and embedded software, each with
hundreds of design parameters and interfaces that need to be engineered,
verified and validated. Add in the compounding effects of product vari-
ances, and the scope of engineering and system design can become over-

& Verification

/ \ whelming.
=
‘ Sonlakn | With the evolution of smarter, more-complex products, many organizations

Figure 1. The design V is a standard process framework for the
systems engineering lifecycle. The left side of the V represents
concept development and decomposition of requirements into
functions and physical entities that can be architected, designed
and developed. The right side of the V represents integration and

struggle with applying their standard development processes. Traditionally,
this process is led by the dominant engineering discipline (often mechani-
cal or electronics), then other disciplines (typically embedded software)
are incorporated and synchronized late in the cycle. Today’s best-in-class
companies have established the necessary processes and adopted tools to

verification of these entities and ultimate validation of the final shift from a diSCip“nEd'baSEd devempment process to a systems engineer'

system.

ing process, like that depicted by the design V (Figure 1).

: Systems Engineering for Smart Products
ANSYS

While the design V serves as a guideline for systems engineering thinking,
process details and tool selection are paramount for reducing development
costs and time to market. In particular, systems engineering processes, like
the design V, traditionally have been document-centric. That is, the system
design and associated decisions are captured in a series of static docu-
ments. Research shows that deploying systems engineering in the context
of dynamic models is much more effective for communicating designs
across the enterprise and then maintaining them throughout the product
development lifecycle.

Moreover, the system development lifecycle is rarely linear, as the design V
implies. There are iterative cycles to verify and improve product design at
every phase. Early deployment of virtual system prototyping and optimiza-
tion can compress these iterative cycles while improving overall product
performance.

Finally, the exponential growth in embedded software requires engineer-
ing leaders to manage the costs associated with developing and testing
embedded systems. More lines of embedded code deployed across multiple
product variants also means an increasing number of software bugs and
risk of product defects. In response, software teams are moving away from
manual coding and instead are deploying model-based software develop-
ment methods with automated code generators, all designed to accelerate
the production and certification of embedded systems.

Managing product complexity, reducing software development costs, and

Fighsr optimizing overall system performance at all design phases are reshaping

= oot how companies develop products. Best practices in model-based systems
S ceocnne & 431% engineering, model-based software development and virtual system proto-
:3:::: i gﬁm typing are integral to overcome these challenges and deliver safer, higher-
Srace oo o quality smart products to the market faster.

Model-Based Systems Engineering

In traditional systems engineering approaches, documents were the au-
thoritative source of system design information. R&D teams produced and
managed a series of documents, such as requirements documents, architec-
ture design documents, detailed design documents and engineering change
documents. One shortcoming is that these documents do not capture mean-
ingful relationships between all the elements in the design. If an engineer
changed an aspect of one subsystem, the impact of that change on other

Figure 2. A model in MBSE unambiguously delineates the

structure and behavior of the system with block diagrams. subsystems had to be discovered and then the documents manually up-
System requirements, functions and component architecture are dated. This process can be expensive and burdensome, and the inevitable
interconnected in an interactive view, which can hide or expose result is that design contradictions are discovered late in the development
details as necessary. cycle — when they are most likely to significantly increase development

Image from ANSYS® SCADE System™.
J g costs and delay launch schedules.

: Systems Engineering for Smart Products
ANSYS

Figure 3. A typical workflow for embedded software system devel-
opment. Unconnected specifications for controls and software en-
gineers, in conjunction with hand-written source code, inevitably
results in software defects.

To better manage the complexities of today’s product architectures and
truly understand dependencies across subsystems, traditional systems
engineering practices have evolved to model-based systems engineering
(MBSE). The fundamental difference between the two is that the authorita-
tive system definition no longer resides in a set of static text-based design
documents, but rather in a living model, one that provides a thorough
understanding of dependencies and interfaces between various subsystems
(Figure 2).

In addition to representing large amounts of design information in more
sophisticated, interrelated ways, models can be easily shared and commu-
nicated across teams, are more amenable to change management, and sup-
port automated and comprehensive traceability from stakeholder require-
ments through implementation. A change to a requirement or architecture
specifications would propagate through the system description, enabling
impact and trade-off studies.

MBSE inherently requires assembling a wide range of component and sub-
system designs, often from globally distributed teams and supply chains.
Open standards for model exchange are critical. In recent years, SysML has
gained considerable traction as an open standard for MBSE. It is a deriva-
tive of UML (Unified Modeling Language), but it was designed particularly
for systems engineers and systems engineering best practices.

Model-Based Software Development

Embedded software is on the rise as a main source of product failure. Some
industry leaders claim every 1,000 lines of embedded software contain
eight bugs. This means that an S-class automobile with 20 million lines of
the code could contain 160,000 errors! To manage this quality risk, as well
as meet tighter standards for embedded software certification, software
engineers need to leverage model-based software simulation tools and
qualified automatic code generators.

Controls Software
Engineer Engineer

g AL

Textual System
Requirements

Source Code

\\ 11001010
00011001
*1 11010010 T >

=
Binary file Hardware

10101010

Compiler

Is compiled code on target
consistent with software
Is source code consistentwith design ?

software design ?

Software
T Detailed
Do control laws Design & Tests
meet requirements ?

Control

Is software design consistent
with controls laws ?

Figure 3 depicts a typical embedded software development workflow. A

controls engineer interprets a set of system requirements and develops the
controller logic. The controls engineer then communicates the control logic
to an embedded software developer, who then authors a software specifica-

: Systems Engineering for Smart Products
ANSYS

Figure 4. Model-based software development and certified code
generation. A common model serves as the single specification.

Automatic code generation eliminates errors between the model
and the final production code.

tion document and writes the software by hand. The software is compiled
and flashed onto hardware, which is then tested in a lab. The entire devel-
opment process is akin to the telephone game children play: As the require-
ments and design are retold and re-interpreted by the various contributors,
there are multiple opportunities for miscommunication and failure.

Compare this to a process based on model-based software development and
automatic code generation, shown in Figure 4. Controls engineers and soft-
ware engineers collaborate on a working model of the control system. The
model itself represents the common design specification. From this model,
the actual embedded software is automatically generated with qualified
code generator.

An important attribute of the model-based workflow is that the control
system model must be completely deterministic: The model is represented
exactly by the generated code with no ambiguity. Therefore, the same
behavior is observed in the simulation and on the target embedded soft-
ware platform. For safety-critical systems and other applications, the code
generator must be qualified in accordance with industry standards, particu-
larly for safety-critical systems. A certified code generator reduces testing
requirements and costs associated with certifying embedded systems for
IS0 26262, DO 178C and other standards.

Controls Software
Engineer Engineer

" 11001010
%

{ \ 00011001
/‘.‘ *| 11010010]
\ / 10101010

C&ﬁﬁﬁler

Binary file Hardware

Textual System Source Code

Requirements =
F = Automatic &
= :‘ Certified Code
ion
Embedded Software Model
Traceable to Requirements Compiler Qualified Testing

Verification Kit Environment

Virtual System Prototyping and Optimization

With today’s complex product architectures, each component not only has
to operate perfectly by itself but in tandem with many other components in
the system. In many industries, virtual system prototyping and optimiza-
tion throughout the system V framework has become a strategic product
development initiative to ensure that a product meets power, reliability and
safety requirements.

: Systems Engineering for Smart Products
ANSYS

Dashtord

i ol

Figure 5. A systems virtual prototype of a hybrid electric vehicle,

which combines detailed mechanical and electric drive train
components with controls and display software
Image from ANSYS Simplorer®.

Model-based systems engineering provides a framework for virtual system
prototyping and optimization because, as soon as the system is described
in a model, an engineering team can simulate and systematically optimize
it. It is not necessary for engineering to wait until system topology or
detailed CAD is available to perform simulation and apply optimization
methods. It can start as soon as the functions and architecture of the sys-
tem are understood.

A systems engineering simulation platform that supports the full array

of physics and various levels of fidelity is a critical component for virtual
prototyping and optimization. For example, at the requirement and func-
tional decomposition phase, systems engineers simulate how a hierarchy

of system functions work together to transform inputs into outputs, react to
events or respond to excitations. Downstream product architectures use be-
havior (0-D) modeling to verify the logic and allocation of functions to phys-
ical components, taking into account physical conservation laws. Finally,

at the bottom of the system V, detailed 3-D physics simulation and control
system modeling are used to design and optimize individual components.

Throughout this process, the ability to readily transcend different levels
of fidelity is important. Results from 3-D modeling and simulation should
be added back into the behavioral model to virtually verify the detailed
designs meet system requirements. To make this computationally cost-
effective, reduced-order modeling (ROM) and 0-D to 3-D cosimulation are
brought to bear. ROM refers to a set of methods that reduce computation-
ally intensive 3-D models into smaller forms that approximate the full 3-D
model for a given set of operational conditions. 0-D to 3-D cosimulation
is the coordination of a partitioned system model between a 0-D system
solver and full 3-D physics solvers.

A key insight from organizations that deploy MBSE and system virtual
prototyping is that the process can produce a proliferation of disparate
models. This is due in part to unmanaged workflows as well as fragmenta-
tion in the tool chain and the use of proprietary modeling languages and
file formats. What is needed is a systems engineering platform based on
open standards that allows engineering teams to build upon the system
model throughout the development cycle and virtually verify the system

at each phase. Open standards for describing physical systems — such as
VHDL-AMS and Modelica — as well as an emerging standard for cosimula-
tion called the functional mockup interface (FMI) are key enablers for such
platforms. Simulation tools that fully support FMI can export a dynamic
model of a subsystem that can then be imported into another tool and con-
nected to other subsystem models for dynamic simulation. It is easy to en-
vision how these open standards enable collaboration and model exchange
between an OEM responsible for the complete system and the supply chain
delivering individual subsystems.

Systems Engineering for Smart Products
ANSYS

Requirements Management Prototypes and Testing
N

REQ 023:0n request, the Machine-Drive should reach e 4‘, [

ym in less than 500ms

Functional Simulation (SysML)

High Fidelity 3D Design

Electronics Design Embedded Software Design|
n

IO IR

Magnetics Thermal Stress

Figure 6. Model-based development process throughout system V

ANSYS, Inc.
Southpointe

275 Technology Drive
Canonsburg, PA 15317
U.S.A.

724.746.3304
ansysinfo@ansys.com

© 2014 ANSYS, Inc. All Rights Reserved.

Summary

Today’s products are increasingly more intelligent and comprise a complex
composition of hardware, electronics and software. Designing and engi-
neering smart products requires systems engineering methods based firmly
in model-based methods and complete system prototyping. Moreover, with
the growth and increasing costs associated with embedded systems, a
model-based software development process based on certified and auto-
matic code generation can substantially reduce development time and risks
associated with software defects.

When your organization is ready to implement a model-based development
process, make sure the systems engineering simulation tools you choose
can meet these critical requirements along the systems V (Figure 6):

« Interactively design a system architecture using model-based system
engineering best practices and the open system modeling language
SysML.

 Perform conceptual and 0-D behavioral modeling to optimize and validate
the system architecture. Leverage standard languages like VHDL-AMS and
Modelica to enable model exchange with the supply chain.

+ Design, optimize and verify individual hardware and electronics
subsystems using best-in-class 3-D multiphysics simulation.

+ Design and automatically generate embedded control systems (or hu-
man-machine interfaces) using model-based software development
methods that are deterministic and meet industry and safety certification
standards.

 Perform virtual systems optimization by combining software, electronics
and hardware designs into a complete system virtual prototype with
reduced-order modeling and/or cosimulation.

ANSYS, Inc. is one of the world’s leading engineering simulation software provid-
ers. Its technology has enabled customers to predict with accuracy that their prod-
uct designs will thrive in the real world. The company offers a common platform of
fully integrated multiphysics software tools designed to optimize product develop-
ment processes for a wide range of industries, including aerospace, automotive,
civil engineering, consumer products, chemical process, electronics, environ-
mental, healthcare, marine, power, sports and others. Applied to design concept,
final-stage testing, validation and trouble-shooting existing designs, software from
ANSYS can significantly speed design and development times, reduce costs, and
provide insight and understanding into product and process performance.

Visit www.ansys.com for more information.

Any and all ANSYS, Inc. brand, product, service and feature names, logos and slo-
gans are registered trademarks or trademarks of ANSYS, Inc. or its subsidiaries in
the United States or other countries. All other brand, product, service and feature
names or trademarks are the property of their respective owners.

